Lecture 12: Special topics

- plan for exams
- mona soluhons coning, please discuss on Discord!

Topic 1: Exohic $\mathbb{R}^{4} s$
Recall: Given a TOP meld $M_{\text {, a }}^{\text {, }}$ sm. str is a maximal atlas of charts on M sit. the marsition maps are smooth (on \mathbb{R}^{h})

M smooth if $\psi_{2}^{-1} \cdot \varphi_{1} c^{\infty}$ for all such pairs

A prior, a given ToP ufld may have O_{1} finite, or infinite sm -str.
Note: Jowly comiable compact Top $(\Rightarrow$ sm $)$ needs
Note: The study of existence|uriqueness of \sin str. is called [is if allow or.]
Remarks: S^{7} has 28 distinct $8 m$ str. up to $0 \cdot p$. differ. [Minor, compact at most
: High (75) feds admit finite sm. sm. Milnor.
4D compact exist with inf. many 8 sm . str, e.g. K3 surface
: Smooth 4DPC: ヨ worsted sm str. on st] [open] $\left\{[x, y, z, w] \in \mathbb{\mathbb { P } ^ { 3 }}\right.$
: ヨuon-snwothable manifolds of $\operatorname{dim} \geqslant 4$
but not dim ≤ 3
e.g. Es manifold.

Theorem [Moose, Stalling] for $n \neq 4$, there is a whique fm. on \mathbb{R}^{n}, up todiffeo morphia.
[Taubes] \exists unconutably many sin. Str. on \mathbb{R}^{4}, up ho. differ.
[Gompf] construction w-iuput Rome knot $K \subseteq s^{3}$ which is TOP slice but not sm. slice and output an exotic sm. str. on \mathbb{R}^{4}.

Note: A sm. str. on \mathbb{R}^{4} which is not arp. differ to the stol sun. str. iscalled exotic.
[Goupf]: uncomitably many exotic $\mathbb{R}^{4} s$ arise this went.

Goal for Topic 1 Mus consmuction
Need pollovoing input
Recall: $X_{0}(k):=B^{4} \cup D^{2} \times D^{2} \quad 0$-mace

$$
\begin{aligned}
& 0 \text {-framing } \partial D^{2} \times D^{2} \\
& \text { of } \nu K
\end{aligned}
$$

Trace embeddinglenuma: Let $k \leqslant s^{3}$ a knot
K is $\operatorname{sm} /$ topslice $\Longleftrightarrow X_{0}(k)$ has a $s m / t o p$ emu. in $\mathbb{R}_{s t-d}^{4}$.

$$
\text { Pf: } \Leftrightarrow \underbrace{\operatorname{con}^{k}}_{B 4}\} s^{4}=\mathbb{R}_{\text {sta }}^{4} u\{p+\}
$$

$$
\begin{aligned}
& \text { "collared" } \\
& \text { odin analogne of } \\
& \text { lac flat. } \\
& \text { [why is it the } 0 \text {-race? } \\
& \text { vs } n \text {-race? }
\end{aligned}
$$

Warning: Smooth 4D Schoenflies is shill open!! ie. given $\varphi: S^{3} \xrightarrow{8 m} s^{4}$
let C_{1}, C_{2} denote components of $S^{4} \mid \varphi\left(S^{3}\right)$ Question: is $\overline{A_{i}} \underset{\underline{\text { differ }}}{ } B^{4}$?
[Analogne known in all of her dimensions]
But [Palais] given $\varphi: B^{4} \stackrel{\text { sm }}{\longrightarrow} S^{4}$ then $\overline{S^{4} \backslash \varphi\left(B^{4}\right)}=B^{4}$. differ So the $D^{2} \times D^{2}$ gives a (tit. used) of a slice disc for K in this B_{B}^{4}. Highly nontrivial input [Quinn] Let X^{4} be a connected, non compact. Then any sm $8 t r$ on ∂X extends a $8 m s t r$ on X.

Gompf's construction:
Let $k \subseteq S^{3}$ TOP slice but not sm. slice, egg. $\operatorname{wh}^{+}(R H T)$. Then $\boldsymbol{J} \varphi: X_{0}(k) \xrightarrow{\text { TOP }} \mathbb{R}^{4}$.
we will now "emstmict" a (new). Str. on \mathbb{R}^{4}.

- $\varphi\left(x_{0}(k)\right)$ is smoother

Check: $\mathbb{R}^{4} \backslash \operatorname{lnt}\left(\varphi\left(X_{0}(k)\right)\right.$ connected, won empact 4 -rufed
\Longrightarrow extend sm. str. on $\partial\left(\varphi\left(X_{0}(k)\right)\right.$ to the comp.
Let $R:=\mathbb{R}^{4}$, equipped w. above sm. str.
Then $R \not \not \neq \mathbb{R}_{\text {std }}^{4}$, since if so, we could have $X_{0}(k) \underbrace{\text { sm }} \mathbb{R}_{s t d}^{4}$ winch would $\Rightarrow \in$ since K not smshi

Topic 2: High knots.
[see Lecture 1 for move averviece]
In general a R-knot is an embedding $S^{k} \hookrightarrow S^{n}$. [inapprop CATegory] codim: $=n-k$. CATegory]
Codim 1: Schoenflies problem [open in PIFF, $n=4$]
[Zeeman, Stalling] in PL, TOP, nontrivial knotting only in [except for 4D schoenflis
[Haefliger, Levine]] knotted smooth $S^{4 k-1} \hookrightarrow S^{6 k}$ e.g. $S^{3} \hookrightarrow S^{6}$.
But that is abont isotopy what absent concondance?
-b yabove, we focus on codim 2 case
[Levine] Ge ${ }_{S^{2 k-1} \hookrightarrow}^{P L T O P} S^{2 k+1}, k \geqslant 3 \equiv$ alg. concordance gp (analogue)

 gp of exotic (2k-1)-spheres
[Kervaire] All even dim keots are slice. \leftarrow sketch at end if time
Before doing any of this, an example: [Option 1: Glue Wether] [Arlin] Spun 2-knots.

Define $\mathbb{R}_{+}^{3}:=\left\{\left(x_{1}, x_{2}, x_{3}, 0\right) \mid x_{3} \geq 0\right\} \subseteq \mathbb{R}^{4}$ with boundary $\mathbb{R}^{2}:=\left\{\left(x_{1}, x_{2}, 0,0\right)\right\}$
Then for $x:=\left(x_{1}, x_{2}, x_{3}, 0\right) \in \mathbb{R}_{+}^{3}, 0 \leqslant \theta \leqslant 2 \pi$, leet

$$
x_{\theta}:=\left(x_{1}, x_{2}, x_{3} \cos \theta, x_{3} \sin \theta\right)
$$

Given $X \subseteq \mathbb{R}_{+}^{3}$ we have $\operatorname{spin}(x):=\left\{x_{\theta} \mid x \in X, 0 \leqslant \theta \leqslant 2 \pi\right\}$.

eeg. spun trefoil

Let A : are in \mathbb{R}_{+}^{3}, endptson \mathbb{R}^{2}. Then $\operatorname{spin}\left(A^{\prime}\right)$ is called a spun 2-tenot

Similarly: - twist spinning

- will spinning

Proposition: Suppose A : are in \mathbb{R}^{3}, endpts on \mathbb{R}^{2}. Let L : arc in \mathbb{R}^{2}, connecting endpls of A
Then $\pi_{1}\left(\mathbb{R}^{4} \backslash \operatorname{spin}(A)\right) \cong \pi_{1}\left(\mathbb{R}^{3} \backslash A \cup L\right)$
Proof of Kernaire reoult (Sketch)
Key input: Any closed, orientable 3-mfld can be obtained [Milnor, Kaplan] as the boundary of:
 attaching $D^{2} \times D^{2}$ s to the umps of a link $L S S^{3}$. s.t. each attached is by even framing. [upgraded version of rue statement that every 3 rifle is the result of Dehissingery of a link] closed, oriented
Upside donn: Every, ${ }^{\prime}$-n'fled M can be changed to s^{3} by attaching $D^{2} \times D^{2}$ s, attached along (even) Pranced
circles in M.
Given $K: S^{2} \hookrightarrow S^{4}$, let F be a seifert 3 meld, ie. $F^{C S^{4}}$ a compact oriented sued $\omega \cdot \partial F=k$.

By the key input, we know $F \leadsto B^{3}$ by attaching $D^{2} \times D^{2} s$ alma a link
$L S F$.
The components of L bound disjoint embedded 2 -discs in B^{5}
(since $5 \geqslant 2+2$, we can use mansversality).
Framing work: the 2-dises have trivial normal bundles Tskipped above so the (even) framing on the boundary extend.
while it seems like conc of bar eu dim is wot interesting,
westilinave:
(Open) question: Are all 2 -links slice? $2 k$-lints?
In general, the ane also interesting gireshoms about isotopy of 2 Rnolsi links mil Ec feat
[freedman] If $k: S^{2} c s^{4}$ imleoc.fleat $\pi_{1}\left(s^{4}, k\right) \equiv 7 L$ thank is (top) unknotted.
[Open] question: Is such K sm. unknotted?
(Open) queshon: Does there exist $K: S^{2} \hookrightarrow s^{4}$ loc.flat, which is not TOP isotopic to a sm 2-kuot?
Remenk: One also considus $\Sigma g \leftrightarrow S^{4}$ infaceknots.

